Metal oxidation states in biological water splitting† †Electronic supplementary information (ESI) available: Additional methodological details and discussion, Tables S1–S10, Fig. S1–S16, spin populations, parameters of optimized structures, experimental details and analysis of 55Mn ENDOR at 2.5 K, analysis of calculated Mn K pre-edge XAS, discussion of reduced S states. See DOI: 10.1039/c4sc03720k Click here for additional data file.
نویسندگان
چکیده
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five Si states (i 1⁄4 0–4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called “high-valent scheme”—where, for example, the Mn oxidation states in the S2 state are assigned as III, IV, IV, IV—the competing “low-valent scheme” that differs by a total of two metal unpaired electrons (i.e. III, III, III, IV in the S2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K Mn ENDOR data of the S2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S0 (III, III, III, IV) to S3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster.
منابع مشابه
A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis† †Electronic supplementary information (ESI) available: Fig. S1–S21; Tables S1–S5, full experimental details and procedures. See DOI: 10.1039/c5sc03059e Click here for additional data file.
متن کامل
Atomistic simulation of the growth of defect-free carbon nanotubes† †Electronic supplementary information (ESI) available: Fig. S1–S10, Tables S1–S9, and the development of carbon–nickel interaction potential, with details of DFT calculations. See DOI: 10.1039/c5sc00938c Click here for additional data file.
متن کامل
Re-evaluating the Cu K pre-edge XAS transition in complexes with covalent metal–ligand interactions† †Electronic supplementary information (ESI) available: Experimental methods; UV-vis absorption spectrum and crystallographic data for 3; fits to Cu K pre-edge XANES spectra; details of DFT, CASSCF, and MR-DDCI3 computational experiments; optimized atomic coordinates for all complexes. CCDC 1031118 and 1031119. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03294b Click here for additional data file. Click here for additional data file.
متن کامل
Conducting polyfurans by electropolymerization of oligofurans† †This work is dedicated to the memory of Professor Michael Bendikov. ‡ ‡Electronic supplementary information (ESI) available: Full experimental and computational details, synthesis of 1–18, Fig. S1–S26 and Tables S1–S4. See DOI: 10.1039/c4sc02664k Click here for additional data file.
متن کامل
Homochiral self-assembly of biocoordination polymers: anion-triggered helicity and absolute configuration inversion† †Electronic supplementary information (ESI) available: Preparation and physical characterization data of 1P and 2M, additional structural description, UV-Vis and CD spectra (Fig. S1–S7), crystallographic refinement details for 1P and 2M (Table S1), selected bond distances and angles for 1P and 2M (Tables S2–S5), ESI(+)-MS and ESI(+)-MSMS spectra (Fig. S8–S11 and Schemes S1 and S2) and PXRD (Fig. S12). CCDC 1046609 and 1046610. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01089f Click here for additional data file. Click here for additional data file.
متن کامل